行业新闻
当前位置: 首页>>新闻中心>>行业新闻

有机合成与机器学习结合发现钙钛矿太阳能电池的最佳空穴传输层


一个国际科研团队创新性地将有机合成技术与预测模型相结合,成功发现了新型功能材料。这些材料能够显著提升钙钛矿太阳能电池中所使用的空穴传输层的性能。该团队确信,这一研发平台不仅能够进一步优化太阳能电池的其他性能特点,还可用于开发适用于其他类型器件的材料,为材料科学与能源领域开辟新的发展路径。
图片 
图片来源:Kurt Fuchs/HI ERN

一个由德国研究机构 Forschungszentrum Jülich 的分支机构 ——Helmholtz Institute Erlangen-Nürnberg for Renewable Energy(HI ERN)牵头的国际团队,创新性地将有机合成与预测模型相结合,在闭环流程中展开探索,成功发现了新的功能性材料。这种被称为混合方法的研究模式,在寻找钙钛矿太阳能电池中空穴传输层材料方面发挥了关键作用。该方法的独特之处在于,借助基于实验数据、机器学习(ML)技术以及通过进一步高通量实验验证的大型分子描述符数据库。

研究团队发现,在运用机器学习和自主优化算法时,充足的数据量固然重要,数据的多样性同样不可或缺。为了攻克这一难题,团队率先构建了一个结构公式数据库,其中囊括了约 100 万个可由市售物质制备的虚拟分子。这一数据库的建立,为后续研究提供了坚实的数据基础。

使用密度泛函理论(DFT)计算和其他计算工具进行定制,以根据相关结构特征计算大量可能的空穴传输材料(HTM),以提高钙钛矿太阳能电池的性能。“然后我们合成了大约 100种初始材料并在太阳能电池中对其进行了测试,这使我们能够训练机器学习模型,以选择另外两个批次,每批约20 种材料,以最大限度地提高太阳能电池器件的效率,”该研究的通讯作者Pascal Friederich告诉PV Magazine。
在机器人系统的帮助下,HI ERN自动生成具有不同特性的分子,并用于在p-i-n结构钙钛矿太阳能电池器件中制造其它相同的太阳能电池、无掺杂剂的HTM。根据该论文,该系列 HTM的结果表明,在贝叶斯优化后,初始功率转换效率超过20%。这些材料的效率高达 26.2%,认证效率为 25.9%。
此外,这些器件在1000多个小时内保持了80% 的初始性能,这归因于新HTM的钝化特性,更有效地抑制了界面处的非辐射复合。“对于模型选择,我们在 101个实验分子数据点的随机10倍交叉验证上训练了不同的机器学习(ML)模型。测试的ML模型包括随机森林回归、线性回归、神经网络、GP 回归和核岭回归。所有简单模型的性能都一样好,“该团队指出。

图片 

“我们能够使用我们为各种分子开发的高通量(HT)合成,并将实验和理论数据相结合,使用贝叶斯优化发现新的空穴传输材料。这是一个很有前途的研究方向,它使用机器学习来学习和理解,而不仅仅是加速发现,“研究团队成员Anastasia Barabash告诉pv magazine,并强调经过训练的ML模型可用于更多地了解微观分子特性和宏观器件性能之间的潜在关系。
研究第一作者Jianchang Wu告诉pv magazine,该研究的挑战之一是一致地纯化数百个分子,保持批次间的可重复性,以及保持“许多环境、结晶和过程因素的统一条件,这些因素可以'严重地”影响结果。该小组指出,此类模型可以作为自主工作流程进一步探索,“以识别和预测更多新分子”,为各种应用量身定制,并补充说,它还可用于使用提取和“从完全训练的模型中提取和阐明”的设计规则来预测新分子设计的钙钛矿器件性能。

展望未来,该研究小组指出,他们计划把材料发现与器件优化融入一个无缝衔接的闭环流程。研究小组着重强调:“达成这一目标,需要在跨学科研究中齐心协力,融合材料科学、工程学以及先进计算技术等多领域的见解,从而构建起一个协同共进的工作流程。”

最近发表在《Science》杂志上的论文“Inverse design workflow discovers hole-transport materials tailored for perovskite solar cells,”中描述了这项研究工作。

参与这项研究的科学家来自埃尔朗根-纽伦堡可再生能源亥姆霍兹研究所 (HI ERN),Forschungszentrum Jülich 研究中心的一个分支机构,卡尔斯鲁厄技术研究所 (KIT),埃尔朗根纽伦堡弗里德里希亚历山大大学 (FAU),韩国蔚山国家科学研究所UNIS),荷兰格罗宁根大学,以及中国厦门大学电子科技大学

The best hole transport layers for perovskite solar cells

An international team has combined organic synthesis with predictive models to discover new functional materials that enhance performance of hole transport layers used in perovskite solar cells. The team asserts that optimizing for other solar cell properties is possible with the platform, as well as using it for development of materials for other kinds of devices.

图片

An international team led by Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (HI ERN), a branch of German research institute Forschungszentrum Jülich, has combined organic synthesis with predictive models to discover new functional materials in a closed-loop process. The so-called hybrid approach was applied to discovering material for hole transport layers in perovskite solar cells. It featured the use of a large molecular descriptor database based on experiments, machine learning (ML) and validation through further high-throughput experiments.

The team found that to be able to use machine learning and autonomous optimization algorithms requires not only a sufficiently large data volume but also data diversity. To address that challenge it began with a database of structural formulas of around one million virtual molecules that could be produced from commercially available substances.

Density functional theory (DFT) calculations and other computational tools were used and tailored to calculate a large set of possible hole transport materials (HTMs) for enhancing the performance of perovskite solar cells based on relevant structural features. “Then we synthesized about 100 initial materials and tested them in solar cells, which allowed us to train machine learning models to select two more batches of about 20 materials in order to maximize the solar cell device efficiency,” the research's corresponding author, Pascal Friederich, told pv magazine.

Molecules with differing characteristics were automatically produced at HI ERN with the help of a robotic system and used to manufacture otherwise identical solar cells, dopant-free HTMs in p-i-n structured perovskite solar cell devices. The results for the series of HTMs showed an initial power conversion efficiency exceeding 20% after Bayesian optimization, according to the paper. These materials reached an efficiency as high as 26.2% and a certified efficiency of 25.9%.

Furthermore, the devices maintained 80% of the initial performance for more than 1000 hours, which was attributed to the passivating properties of the new HTM, suppressing nonradiative recombination at the interface more effectively. “For model selection, we trained different ML models on a random 10-fold cross-validation of the 101 experimental molecular data points. Tested ML models included random forest regression, linear regression, neural networks, GP regression, and kernel-ridge regression. All simple models performed equally well,” noted the team.

“We were able to use the high throughput (HT) synthesis we developed for the wide range of molecules, and couple experimental and theoretical data to discover new hole-transport materials using Bayesian optimization. This is a promising research direction that uses machine learning to learn and understand, rather than just accelerating discovery,” Anastasia Barabash, research team member, told pv magazine, stressing that the trained ML models can be used to learn more about the underlying relationship between microscopic molecular properties and macroscopic device performance.

Research first author, Jianchang Wu, told pv magazine that one of the challenges of the study was to purifiy hundreds of molecules consistently, maintaining reproducibility from batch to batch, as well as keeping uniform conditions of the “many environmental, crystallization, and process factors that can “substantially” affect the outcome. Such models can be further explored as autonomous workflows “to identify and predict further novel molecules” tailored for a variety of applications, noted the group, adding that it could also be used to predict perovskite device performance of new molecular designs using design rules extracted and “elucidated from a fully trained model.”

Looking ahead, the group said it will integrate material discovery and device optimization into a seamless, closed-loop process. “Achieving this will require a concerted effort in interdisciplinary research, combining insights from materials science, engineering, and advanced computational techniques to create a synergistic workflow,” it said.

The research work is described in the paper “Inverse design workflow discovers hole-transport materials tailored for perovskite solar cells,” recently published in Science.

The scientists participating in the study were from Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (HI ERN), a branch of Forschungszentrum Jülich, Karlsruher Instituts für Technologie (KIT), Friedrich Alexander University Erlangen Nürnberg (FAU), Ulsan National Institute of Science in South Korea, in China, University of Groningen, in Netherlands, as well Xiamen University and the University of Electronic Science and Technology, both based in China.

(消息来源:pv-magazine.com, Science)